
Comparison of SDN OpenFlow Network Simulator

and Emulators: EstiNet vs. Mininet

Shie-Yuan Wang

Department of Computer Science

National Chiao Tung University

Hsinchu, Taiwan

shieyuan@cs.nctu.edu.tw

Abstract—In this paper, we compare and evaluate the cor-
rectness, performance, and scalability of EstiNet OpenFlow
simulator, EstiNet OpenFlow emulator, and Mininet OpenFlow
emulator over a set of grid networks. The popular Floodlight
OpenFlow controller is used without any modification to control
the simulated/emulated OpenFlow switches created in these tools.
We performed experiments over a set of N x N grid networks,
where N = 5, 6, ..., 31 and used the real-world ping program to
observe whether the average RTTs reported by these ping packets
are correct or not over these tools. We found that in EstiNet
simulation, the simulated results of the average RTT are always
correct and repeatable, but EstiNet simulator needs more time
to finish the simulation when the network size becomes larger.
As for emulation, we found that Mininet emulator generated
strange results that cannot be explained over some network sizes.
In addition, Mininet emulator spends a huge amount of time on
its program launch, network setup, and resource releasing when
the network size is large. As for EstiNet emulator, we found that
it generated good performance and scalability and it used less
time to obtain results.

I. INTRODUCTION

In recent years, software-defined networks (SDNs) [1] have

come into existence as a new type of network to solve the

limitations of legacy networks. The main difference between

legacy networks and SDNs is the way they manage the entire

network. The former uses a distributed method to manage

the network while the latter uses a centralized method to

help network administrators more conveniently and flexibly

configure the settings of a network. The OpenFlow protocol

[2], which has been supported by network providers such as

Google, Microsoft, Amazon, and equipment vendors such as

NEC, Cisco, is one of the mechanisms that fit into the concept

of SDN. An OpenFlow controller sends control messages to

OpenFlow switches to instruct them how they should process

incoming packets. At present, SDN OpenFlow networks are

more and more prevalent because of the benefits of improved

network efficiency.

To evaluate the performance of a network efficiently, instead

of building a large experimental testbed (e.g., Emulab [3] and

PlanetLab [4]), there are two common methods — simula-

tion and emulation, to mimic the environment of an actual

network without real deployment. The former approach uses

a software program to execute the operations of real devices

and the interactions between them. Running a simulation is

inexpensive, flexible, controllable, and scalable than using

real devices to run real operating systems and applications.

Nevertheless, if the model used in the simulator is not correct

enough, the results of the simulator will deviate from the

results of the actual experiment. To overcome this problem, the

latter approach, emulation, uses some real devices running real

applications to interact with some simulated devices. Using an

emulator is like performing experiments. Therefore, the clock

used by the emulator must be the real time clock while the

simulation clock can be faster or slower than the real time.

Because an emulator does not have its own clock to precisely

control the execution order of emulated components, but

instead must rely on the kernel’s CPU scheduler to schedule

the execution order, every time when an emulator generates

results, the results may be different due to some activities

occurring on the system. In contrast, the results generated by

a simulator are always the same because its simulation world

is closed without uncontrollable events.

In this study, we used two tools that can simulate or emulate

an OpenFlow network. One of them is EstiNet [5], which

can be used as a simulator or an emulator, and the other is

Mininet emulator [6], [7]. One good property of EstiNet is that

it uses the “kernel re-entering” methodology [8], [9] to enable

unmodified real application programs to run on simulated

hosts. Because of this capability, the simulation results of

EstiNet simulator are as accurate as the results obtained from

an emulator. Thus, EstiNet simulator not only has many

good advantages of simulation, which uses its own simulation

clock to control the execution order of simulation events,

but also generates very accurate results. In an OpenFlow

network simulated by EstiNet, real-life OpenFlow controller

programs such as NOX/POX [10], Ryu [11], and Floodlight

[12] can directly run on a simulated host to control simulated

OpenFlow switches without any modification. As for EstiNet

emulator, like any emulator must do, it needs to perform the

emulation in real time and can allow the controller application

program to run on an external machine to control emulated

OpenFlow switches. Due to the use of the kernel re-entering

methodology, however, EstiNet emulator can also allow the

controller program and emulated OpenFlow switches to run

on the same machine.

Mininet emulator is an inexpensive and quickly configurable

network testbed. So far, it is the most well-known tool sup-

porting SDN OpenFlow network research, as observed from

IEEE ISCC 2014, the nineteenth IEEE Symposium on Computers and Communications, June 23-26 2014, Madeira, Portugal

the ONS 2013 conference [13]. Mininet uses virtual hosts,

switches, and links to create a network on a single OS kernel,

and uses the real network stack to process packets and con-

nect to real networks. In addition, Unix/Linux-based network

applications are also allowed to run on virtual hosts. In an

OpenFlow network emulated by Mininet, a real OpenFlow

controller application can run on an external machine or on

the same machine where virtual hosts are emulated.

In this paper, we compared the correctness, performance,

and scalability of EstiNet simulator, EstiNet emulator, and

Mininet emulator. As will be reported in this paper, we found

that EstiNet simulator shows its correctness and scalability

and EstiNet emulator performs better than Mininet in several

performance aspects.

II. ARCHITECTURE OF ESTINET AND MININET

A. EstiNet

“Kernel re-entering (KR) [8], [9],” the unique methodology

used by EstiNet, is implemented by using tunnel network

interfaces to catch the packets sent down from the IP layer

in the Linux kernel and send them to the simulation engine.

If an application program running on host 1 sends a packet

to another application program running on host 2, the packet

will go through the real socket/TCP/IP layers in the Linux

kernel and go into a tunnel network interface that connects

to the simulation engine. Within the simulation engine, each

host has its own simulated protocol stack that contains the

Medium Access Control (MAC) layer, the physical layer, and

other protocol layers below the IP layer. These layers simulate

many effects such as link delay, link bandwidth, link down

time, etc. After experiencing these simulated effects on host

1, the packet is sent to the physical layer of host 2 and will

be processed by the protocol stack of host 2 in the simulation

engine. After that, the packet is sent out from the simulation

engine into another tunnel network interface that connects to

the IP protocol in the Linux kernel. From that point on, the

packet will be processed by the IP/TCP/socket layers of the

Linux kernel until it is received by the application program

running on host 2.

With the KR methodology, EstiNet not only enables real

applications to run on simulated hosts but also uses the real

TCP/IP protocol in the Linux kernel to set up TCP connections

between them. Note that in a real OpenFlow network each

OpenFlow switch needs to establish a TCP connection with a

real OpenFlow controller. With the above unique capabilities

brought by the KR methodology, in an EstiNet simulated

OpenFlow network, each simulated OpenFlow switch can es-

tablish a real TCP connection with a real OpenFlow controller

and the protocol processing between the OpenFlow controller

and an OpenFlow switch is exactly the same as the protocol

processing for setting up a TCP connection between two real

hosts. More details about the kernel re-entering methodology

can be found in [8], [9].

B. Mininet

Mininet [6] creates virtual hosts by using a process-based

virtualization method and the network namespace mechanism,

which is a feature supported since Linux version 2.2.26, to

separate network interfaces, routing tables, and ARP tables of

different virtual hosts. The virtual switches in Mininet are a

kind of software OpenFlow switches called “Open vSwitch”

[14]. The links between virtual hosts and virtual switches are

implemented by using virtual Ethernet pairs provided by the

Linux kernel. If a packet is sent from one application running

on host 1 to another application running on host 2, it will

be processed by the real network protocol stack in the Linux

kernel. In an OpenFlow network emulated by Mininet, virtual

switches need to set up TCP connections to a real OpenFlow

controller, which can run on a virtual host or on an external

machine. However, because in Mininet the CPU cycles need

to be shared by all the virtual hosts, virtual switches, and the

controller running on a single OS kernel and the scheduling

order of these operations cannot be precisely controlled by

the CPU scheduler in the Linux kernel, the results generated

by Mininet emulator cannot be repeatable and sometimes may

differ from the correct results.

III. EXPERIMENTAL SETTINGS

Figure 1 shows a 5 x 5 grid network among the tested 27

N x N networks, where N is 5, 6, 7, ..., 31. We used this

figure to explain the experimental settings when N = 5. These

grid networks are used to evaluate three different tools —

EstiNet 8.0.4 simulator, EstiNet 8.0.4 emulator, and Mininet

2.0 emulator. Node 1 and node 2 are simulated hosts that link

to node 5 and node 9, respectively. Node 5, 6, 7,..., 29 are

simulated/emulated OpenFlow switches that support the Open-

Flow 1.0 protocol. The Floodlight 0.90 controller application

ran on node 3, which is a simulated host. Node 4 simulates a

traditional switch, which connects the 25 OpenFlow switches

with node 3 to form the control-plane network. Over this

control-plane network, these OpenFlow switches will establish

their TCP connections with the OpenFlow controller and then

exchange messages with the controller. We set the bandwidth

and delay of each link to 100 Mbps and 1 ms, respectively.

During a simulation or an emulation, a real-world ping

program running on node 1 sent ping packets to node 2 100

times (each separated by 1 second) to measure the Round

Trip Time (RTT) between node 1 and node 2. Because the

OpenFlow switches need to communicate with the OpenFlow

controller to know how to forward the first ping request/reply

packets, the first three ping RTT records are higher than the

rest 97 RTT records. Therefore, we removed the first three

ping RTT records and averaged the rest 97 records of RTT

as the average RTT between node 1 and node 2 for this ping

test. To get reliable results, we repeated the ping test 10 times

and obtained their respective average RTTs. Then, we averaged

these ten average RTTs and used this value as the final average

RTT between node 1 and node 2. Because EstiNet’s simulation

results were always correct and repeatable across the 10 ping

tests, we did not repeat the ping test 10 times for EstiNet

2

IEEE ISCC 2014, the nineteenth IEEE Symposium on Computers and Communications, June 23-26 2014, Madeira, Portugal

Fig. 1: A N x N grid network, where N = 5.

simulator. However, because an emulator’s results cannot be

repeatable. We repeated the ping test 10 times for EstiNet

emulator and Mininet emulator to evaluate their accuracy and

scalability performance.

We used different sizes of the N x N grid network where N

is 5, 6, 7, ..., 31 to create networks with different numbers of

OpenFlow switches. In these networks, a N x N grid network

has N
2 OpenFlow switches in the network. The reason why

we did not let N exceed 31 was that Floodlight can only

control up to 1,000 OpenFlow switches at most. Therefore, we

just created up to 31 * 31 = 961 OpenFlow switches in the

network. For EstiNet simulator, because its results are always

correct and repeatable, we show the average RTT (ms), main

memory consumption (MB), and speed ratio of the elapsed

time to the simulated time over these N x N networks. As

for EstiNet emulator and Mininet emulator, we showed their

average RTT (ms), standard deviation of RTT (ms), main

memory consumption (MB), failure rate (%) of ping tests, and

total execution time (s) over these N x N networks.

IV. PERFORMANCE AND SCALABILITY EVALUATION

First, we present the results of EstiNet simulator and com-

pare them to the theoretical values to evaluate the correctness,

scalability, and performance of this tool. Then, we present the

results of EstiNet emulator and Mininet emulator and compare

their correctness, accuracy, reliability, and scalability.

A. EstiNet Simulator

EstiNet simulator uses its unique methodology, “kernel re-

entering,” to run simulations and emulations. In the simulation

mode, the operations of real applications running on any

host are precisely controlled by its simulation clock and the

measured/reported time by real applications (such as the RTTs

reported by ping packets) are all based on its simulation clock.

As a result, no matter whether the simulation speed is faster

or slower than the real time, the reported RTT times by the

ping program are always correct and the same.

In our experiment, we ran the ping program on node 1 and

let it send ping packets to node 2. The shortest path between

node 1 and node 2 is composed of N OpenFlow switches.

Therefore, the number of hops between node 1 and node 2 is

proportional to N in a N x N grid network and actually it is

(N + 1). For this reason, we used the number of hops that a

ping request packet needs to pass as the X-axis variable when

showing the average RTT and standard deviation of RTTs of

ping packets.

Figure 2 shows the average RTT vs. the number of hops.

We take N = 5 as an example. When there are N + 1 = 6

hops between node 1 and node 2, the theoretical value for the

average RTT should be 12 ms (i.e., 1 ms link delay * (N +

1) hops * 2 round-trips). From this figure, one sees that this

theoretical value is exactly the same as the simulated results

for N = 5. Actually, the simulated average RTTs match all

theoretic values for all N = 5, 6, 7, ..., 31. Therefore, this figure

shows the correctness and scalability of EstiNet simulator.

 0

 10

 20

 30

 40

 50

 60

 70

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A
v
e

 R
T

T
 (

m
s
)

of hops

Fig. 2: Average RTT in EstiNet simulator over a N x N grid

network, where N = 5, 6, 7,...,31

Figure 3(a) and Figure 3(b) show the main memory con-

sumption and the speed ratio of the elapsed time to the

simulated time of EstiNet simulator under different numbers

of OpenFlow switches (N2). The reason why we use the N
2

as the X-axis in these figures is that the number of OpenFlow

switches directly affects the main memory space consumption

and the simulation speed. In Figure 3(a), we used the “top”

command on Linux to get the main memory space used by the

EstiNet simulator process. One can see from the figure that the

consumption of main memory space increases linearly as the

number of OpenFlow switches increases and simulating an

OpenFlow switch in EstiNet only consumes 0.15 MB of main

memory. This indicates that just 1 GB of main memory is

enough to simulate up to 6,666 OpenFlow switches in EstiNet

and memory space is not the resource bottleneck of EstiNet.

Figure 3(b) shows the ratio of the elapsed time, which is the

real time required to simulate the network, to the simulated

time, which is the time that one wants to simulate the network,

under different numbers of OpenFlow switches. If the ratio is

2, it means that one has to spend 2 seconds in the real world

to simulate the network for 1 second. The required elapsed

time is caused by the load of Link Layer Discovery Protocol

(LLDP) [15] packets generated and delivered by Floodlight.

Floodlight sends LLDP packets to all ports of all OpenFlow

3

IEEE ISCC 2014, the nineteenth IEEE Symposium on Computers and Communications, June 23-26 2014, Madeira, Portugal

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

M
e
m

o
ry

 S
p
a
c
e
 (

M
B

)

of OpenFlow switches

(a) Main Memory Consumption

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 100 200 300 400 500 600 700 800 900 1000

S
p
e
e
d
 R

a
ti
o

of OpenFlow switches

(b) Speed Ratio of the elapsed time to the simulated time

Fig. 3: Main Memory Consumption and Speed Ratio of

EstiNet simulator over a N x N grid network, where N = 5,

6, 7,...,31

switches in the network every 15 seconds in order to detect and

maintain the newest network topology. Since the port count of

a grid network grows with the number of OpenFlow switches

(the port count is roughly 4 * # of OpenFlow switches), it is

easy to infer that the ratio of the elapsed time to the simulated

time will increase (i.e., the simulator will run slower) when

the number of OpenFlow switches increases. From Figure 3(b),

one sees that although the speed ratio is not linear with the

number of OpenFlow switches, EstiNet simulator can still run

quite fast to simulate the LLDP packet traffic on the control-

plane network.

B. EstiNet Emulator and Mininet Emulator

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A
v
e

 R
T

T
 (

m
s
)

of hops

(a) EstiNet emulator

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

 3600

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A
v
e

 R
T

T
 (

m
s
)

of hops

Exp 1
Exp 2
Exp 3

(b) Mininet emulator

Fig. 4: Average RTT of EstiNet emulator and Mininet

emulator over a N x N grid network, where N = 5, 6, ..., 31.

In Figure 4(a), the results generated by EstiNet emulator

are the same as the results generated by EstiNet simulator,

which are also the theoretical values. The main difference

between EstiNet emulator and EstiNet simulator is that EstiNet

emulator does not use a simulation clock but instead uses

the real clock in the Linux kernel to trigger the operations

of network applications and protocol processing and report

the RTT values of ping packets. Therefore, if the CPU is not

powerful enough to keep the emulation real time, the reported

RTT value will become higher than the theoretic value. From

Figure 4(a), one sees that EstiNet emulator is very accurate

until N is 30. However, the emulated RTT value is a little bit

higher than the theoretical value when N is 31.

For Mininet emulator, its average RTT values over different

number of hops as shown in Figure 4(b) are hard to explain.

In the first set of experiments, the measured average RTTs

are 104 ms, 3,558 ms, and 250 ms when N is 5, 6, and 7,

respectively. These average RTT results deviate from their

theoretic values too much and show that Mininet emulator

does not generate correct and reliable results for these settings.

Because we cannot explain why Mininet emulator exhibited

such a strange behavior, we decided to do the same set

of experiments three more times to confirm whether this

phenomenon is accidental or not. The three curves shown

in Figure 4(b) denoted as Exp1, Exp2, and Exp3 represent

the first, second, and third sets of experiments performed

over Mininet emulator. One sees that across these three sets

of experiments, Mininet emulator always generates incorrect

results when N is 5, 6, and 7. Because we are not the

developers of Mininet emulator, we do not know how to

explain these strange phenomenon. However, we note that

when N is not 5, 6, or 7, the results of Mininet emulator

are close to the theoretic values and when N = 31 the average

RTT value is still close to the theoretic value.

 0
 0.3
 0.6
 0.9
 1.2
 1.5
 1.8
 2.1
 2.4
 2.7

 3
 3.3
 3.6

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
td

D
e

v
R

T
T

 (
m

s
)

of hops

(a) EstiNet emulator

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
td

D
e

v
R

T
T

 (
m

s
)

of hops

Exp 1
Exp 2
Exp 3

(b) Mininet emulator

Fig. 5: Standard deviation of the average RTTs by EstiNet

emulator and Mininet emulator over a N x N grid network,

where N = 5, 6, 7, ..., 31.

4

IEEE ISCC 2014, the nineteenth IEEE Symposium on Computers and Communications, June 23-26 2014, Madeira, Portugal

As we mentioned before, because the ping program ran 10

times for each experiment of an emulator, there were totally

10 average RTT records for each tool. Nevertheless, there

were 10 average RTT records for EstiNet emulator and 30

average RTT records for Mininet emulator because we did

the same experiment three times for Mininet emulator. We

used these data to calculate the standard deviation of the

average RTTs generated by the two tools. Figure 5(a) shows

the standard deviations of average RTTs of EstiNet emulator.

These standard deviations are almost equal to zero, meaning

that the average RTTs are almost the same across the 10

different ping tests. This shows the consistency and correctness

of EstiNet emulator.

Figure 5(b) shows the standard deviations of average RTTs

of Mininet emulator. One sees that there are large standard

deviations when N is 5, 6 and 7. This means that the average

RTTs are spread over a very large range of values across the

30 ping tests and this shows that Mininet emulator does not

produce correct and consistent results under these settings.

From Figure 4(b) and Figure 5(b), one sees that Mininet

emulator does not generate correct and consistent results under

some settings. In contrast, the correctness and accuracy of

EstiNet emulator are higher than Mininet emulator before N

reaches 31.

When testing Mininet emulator, we found that the ping

packets may get lost due to insufficient CPU cycles to run the

emulation in real time. Because an emulator has to execute

all emulated OpenFlow switches and network applications in

real time, the CPU workload will become heavier and heavier

when the number of OpenFlow switches increases. When this

situation occurs, the CPU starts to generate packet backlog

and the ping packets will start to experience longer delays. If

the backlog queue overflows, the ping packets will inevitably

need to be dropped by the emulator.

We ran the ping program 10 times for each experiment and

the failure might happen among the 10 measurements. The

failure rate is defined to be the number of failures divided by

10. We defined that a measurement failed if the first 20 ping

packets sent by the ping program, which sent 100 ping packets

consecutively, all get dropped. Otherwise, it was considered

successful. For example, if the first 10 ping packets get

dropped and the eleventh ping packet successfully returned, it

was still considered a successful case and we then calculated

the average RTT of the rest 90 packets. Figure 6(a) shows that

even though N increases up to 31, the failure rates of EstiNet

emulator over different N values are always zero. This shows

that EstiNet emulator is very reliable. Conversely, Figure 6(b)

shows that the failure rates over Mininet emulator can be very

high over different values of N and across the three sets of

experiments. We do not know how to explain this unreasonable

phenomenon but this shows the instability of Mininet emulator.

Figure 7(a) and Figure 7(b) show the main memory con-

sumption by EstiNet emulator and Mininet emulator, respec-

tively. These measurements were performed by using the “top”

command in Linux. Clearly, when the number of emulated

OpenFlow switches increases, the consumption of main mem-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

F
a
ilu

re
 R

a
te

 (
%

)

of OpenFlow switches

(a) EstiNet emulator

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

F
a
ilu

re
 R

a
te

 (
%

)

of OpenFlow switches

Exp 1
Exp 2
Exp 3

(b) Mininet emulator

Fig. 6: Failure rate of EstiNet emulator and Mininet emulator

over a N x N grid network, where N = 5, 6, 7,..., 31.

ory increases for both tools. However, one sees that Mininet

emulator consumes more main memory than EstiNet emulator

under the same number of OpenFlow switches. For example,

when N
2=100, EstiNet emulator uses only 32 MB of main

memory but Mininet emulator uses 171 MB of main memory, a

factor of 5.34! As the number of emulated OpenFlow switches

increases up to 961, the difference between the main memory

consumption of EstiNet emulator and that of Mininet emulator

becomes larger and reaches 7.35. These results show that

EstiNet emulator consumes much less main memory than

Mininet emulator. The reason for the large difference is that

in EstiNet an OpenFlow switch is simulated as a module

compiled and linked with its simulation engine while in

Mininet an OpenFlow switch is simulated by a process and

a namespace. Since the memory consumption of a process

and a namespace is much larger than a module on Linux, this

explains the large difference in their memory consumptions.

Finally, we compared the total execution time between

the two tools. The total execution time includes the tool

launch time and network setup time, the execution time of the

emulation, and the resource release time of emulation. The

execution time of the emulation, which is 100 seconds in real

time, is the same for both tools. Thus, the difference between

the total execution time of these tools is their launch time,

network setup time, and resource release time. Figure 8(a) and

Figure 8(b) show the total execution time of EstiNet emulator

and Mininet emulator, respectively. The total execution time

of Mininet emulator is smaller than EstiNet emulator before

N
2 reaches 36. When N

2 reaches 36, the total execution time

of Mininet emulator, which is 120 seconds, is a bit smaller

than the total execution time of EstiNet emulator, which is

132 seconds. When N
2 reaches 49, Mininet emulator begins

to spend more time in launch time, network setup time, and

resource release time than EstiNet emulator. The difference

5

IEEE ISCC 2014, the nineteenth IEEE Symposium on Computers and Communications, June 23-26 2014, Madeira, Portugal

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900 1000

M
e
m

o
ry

 S
p
a
c
e
 (

M
B

)

of OpenFlow switches

(a) EstiNet emulator

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

 100 200 300 400 500 600 700 800 900 1000

M
e
m

o
ry

 S
p
a
c
e
 (

M
B

)

of OpenFlow switches

(b) Mininet emulator

Fig. 7: Main memory space consumption of EstiNet

emulator and Mininet emulator over a N x N grid network,

where N = 5, 6, 7,..., 31.

between the total execution time of Mininet emulator and that

of EstiNet emulator becomes greater and greater when the

value of N2 keeps increasing. When N
2 reaches 961, the total

execution time of Mininet emulator becomes approximately 32

times the total execution time of EstiNet emulator. According

to our analysis, Mininet spends most of its total execution

time in the launch time and network setup time to activate the

processes used to emulate OpenFlow switches.

 130

 135

 140

 145

 150

 155

 160

 165

 170

 175

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

of OpenFlow switches

(a) EstiNet emulator

 600

 1200

 1800

 2400

 3000

 3600

 4200

 4800

 5400

 6000

 0 100 200 300 400 500 600 700 800 900 1000

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

of OpenFlow switches

(b) Mininet emulator

Fig. 8: Total execution time of EstiNet emulator and Mininet

emulator over a N x N grid network, where N = 5, 6, 7,...,

31.

V. CONCLUSION

In this paper, we compared the correctness, performance,

and scalability of EstiNet OpenFlow network simulator, Es-

tiNet OpenFlow network emulator, and Mininet OpenFlow

network emulator. The EstiNet tool can operate in either

the simulation mode or the emulation mode. We used the

popular open source Floodlight OpenFlow controller to control

the OpenFlow switches created in EstiNet simulator, EstiNet

emulator, and Mininet emulator. In our experiments, we varied

N from 5 to 31 to create a set of N x N grid networks with N
2

OpenFlow switches. We ran the real-world ping program to

measure the RTTs experienced by ping packets, the failure rate

of ping tests, and the main memory consumption of these tools

when simulating/emulating N
2 OpenFlow switches. EstiNet

simulator shows its correctness, accuracy, and scalability but

it needs more time to simulate more OpenFlow switches.

Mininet emulator generally worked well but generated incon-

sistent results in our tests under some network settings. In

contrast, EstiNet emulator reveals correctness and accuracy

before the number of OpenFlow switches reaches 961, beyond

which its results started to deviate from the theoretical values

bit.

REFERENCES

[1] “Software-Defined Networking: The New Norm for Networks,” a white
paper of Open Networking Foundation, April 13, 2012.

[2] Nick Mckeown, Tom Anderson, Hari BalaKrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner, “Open-
Flow: Enabling Innovation in Campus Networks,” ACM SIGCOMM
Computer Communication Review, Volume 38 Issue 2, April 2008.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. “An Integrated Experimental
Environment for Distributed Systems and Networks,” In Proc. of the Fifth
Symposium on Operating Systems Design and Implementation, pages 255
- 270, Boston, MA, Dec. 2002.

[4] B. Chun, D. Culler, T. Roscoe, A. Bravier, L, Peterson, M. Wawrzoniak,
and M. Bowman, “PlanetLab: an Overlay Testbed for Broad-Coverage
Services,” ACM SIGCOMM Computer Communication Review, Volume
33 Issue 3, July 2003.

[5] S.Y. Wang, C.L. Chou, and C.M. Yang, “EstiNet 8.0 OpenFlow Network
Simulator and Emulator,” IEEE Communication Magazine, Vol. 51, Issue
9, September 2013.

[6] Bob Lantz, Brandon Heller, and Nick McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks” ACM Hotnets 2010,
October 20-21, 2010, Monterey, CA, USA.

[7] Mininet – An Instant Virtual Network on your Laptop (or other PC),
available at http://mininet.org/

[8] S.Y. Wang and H.T. Kung, “A Simple Methodology for Constructing
Extensible and High-Fidelity TCP/IP Network Simulator,” IEEE INFO-
COM’99, March 21-25, 1999, New York, USA.

[9] S.Y. Wang, C.L. Chou, and C.C. Lin, “The Design and Implementation of
the NCTUns Network Simulation Engine,” Simulation Modelling Practice
and Theory, 15 (2007) 57-81.

[10] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martn Casado,
Nick McKeown, Scott Shenker, “NOX: towards an Operating System for
Networks,” ACM SIGCOMM Computer Communication Review, Volume
38 Issue 3, July 2008

[11] Ryu, a component-based software defined networking framework, avail-
able at http://osrg.github.io/ryu/.

[12] Floodlight OpenFlow controller, available at
http://www.projectfloodlight.org/floodlight/

[13] Open Networking Summit 2013, Santa Clara, CA, Apr.15-17 2013
[14] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending Networking into the Virtualization Layer,” in Prof. of HOT-
NETS 2009.

[15] Link Layer Discovery Protocol, IEEE 802.1AB standards.

6

